/. TRANSCENDENTAL
FUNCTIONS

§7.1. Exponentiation

We defined addition and multiplication for natural
numbers and extended these to the set of complex
numbers, C. However we’ve defined x™ only for natural
numbers. Part of the reason is that there are problems
when m is non-real, or even a negative real.

But it is possible to provide a definition of x> when
X is a positive real, and z is any complex number. This
simplest way to do this is to define e, for the constant e,
as a sum to infinity of a certain power series, and then to
define x? as e?'09%

Of course this requires defining the exponential and
the log functions. We define the exponential function as a
power series. What exactly is an infinite series? It is the
sum to infinity of some sequence. So we recall the
definition of an infinite sequence.

87.2. Sequences

An infinite sequence of elements on a set S is a
function u:N—S. We call u(n) the n’th term and denote
it by un. The sequence can be written as uo, Ui, ... or
simply (un) where up, is the n’th term.
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We now focus on infinite sequences of complex
numbers where we can develop the concept of
convergence.

A sequence (an) of complex numbers is bounded if there
exists a real number K such that |an| < K for all n.

A sequence (an) is null if for all € > 0 |an| < € for all
sufficiently large n. Clearly null sequences are bounded.
What does ‘sufficiently’ large mean? A more formal

version of this definition is that a sequence (an) is bounded
iIf Ve[e >0 —>3INVN[n >N — |an| < €]].

Example 1: The sequence 1, 1/2, 1/3, 1/4, ... is null.
The sequence 1, -1, 1, —1, ... is bounded but not null.
The sequence 1, 2, 3, 4, ... is unbounded.

Theorem 1: The sum and difference of null sequences are
null.

Proof: Let ¢ > 0. For some N, |an|, |bn| < &/2 for all n > N
and so |an + bp| < |an| + |bn| < &. YO

Theorem 2: If (a,) is null and (bn) is bounded then (anbn)
is null.

Proof: Suppose K > 0 such that |bn| < K for all n and
suppose that (an) is null. Lete > 0.
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Then for some N, |an| < % for all n > N. Hence |anbp| <e.
%O

We say that (an) converges to a limit L if the

sequence (an — L) is null and we write an — L or lim an
= L. If itdoesn’t converge, we say that it diverges. Limits,
If they exist, are unique. The limit of a sum, difference or
product of two convergent sequences is the sum,

difference or product of the respective limits and if (an)

converges to a non-zero limit L then (1/an) converges to
1/L. You should have seen all of this before.

We say that a sequence (an) is
increasing if an < an+1 for all n, and
strictly increasing if an < ans+1 for all n.

Similarly we define decreasing and strictly decreasing.

A sequence (an) is monotone if it is either increasing or
decreasing.

Theorem 3: A bounded increasing sequence of positive
reals converges.

Proof: Suppose (an) is a bounded increasing sequence.
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Since U{an | n € N} is a non-empty initial segment of Q*

and is bounded above, it’s a positive real number, say L.

Let € > 0. Since we’re working with positive reals we need

tohave L —€>0, so let e, = MIN(g, L).

If an < L — g for all n then:

u{an | n € N} <L — g, a contradiction.

Hence an > L — &; for some N.

Foralln>N, we have L>an>any>L —¢;and so
lan—L|<ei<e %@

Corollary: A bounded increasing sequence of real

numbers converges.

Case 1: ay > 0 for some N. The sequence ay, an+1, ... IS an

increasing sequence of positive real numbers, bounded

above, and so converges to some limit L. Clearly this will

be lim an.
Case 2: an <0 for all N. Define by =1 + (an — ao).
Then bp > 0 for all n and is bounded above.

Hence (bn) converges and hence so does (an).
Corollary: A bounded decreasing sequence converges.
Proof: If (an) is decreasing then (— an) is increasing.

Theorem 4 (Squeeze Law):
If an < bn <chand an — L and ch — L then by — L.
Proof: |bn — L| £ MAX(|lan — L], |cn — L]). % ©®
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Theorem 5: If 0 < a < 1 then (a") converges to 0.

If a>1, (") diverges.

Proof: If 0 < a < 1 then (a") is decreasing and bounded
below. If a> 1, (") is unbounded.

§7.3. Infinite Series

An infinite series is really just an infinite sequence,
for which we consider the corresponding sequence of
partial sums. When we consider it as a series, we write

(an) as Zan. The sequence of partial sums is (sn) where
Sh=apt+a+..+an
The series Xap is said to converge if the sequence
(sn) converges and the limit is written using the same
notation, that is, Zan. Sometimes we start at n = 1, in

o0
which case we write Y an . If the series doesn’t converge
n=1
it is said to diverge.

Theorem 6: If Xa, converges then lim an = 0.
Proof: For all n, Sn =sp-1 + a, and lim sp = lim sp-1. %.©

As usual a geometric series is one of the form Za".

If |a| < 1 then Za" converges to 1 _a
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Theorem 7 (Comparison Test): If 0 < an < bp and Xbp

converges then Za, converges and Xap < Xbn.
Proof: Use the squeeze law on the partial sums. %@

Theorem 8 (Ratio Test):
If dn+1

) < r <1 for all sufficiently large n then
n

Yan converges.
Proof: Use the Comparison Test with Zao "

Theorem 9 (Ratio Limit Test):
If lim ans/an = L < 1 then Za, converges.

Proof: For sufficiently large n, an«1/an <%(1 + L) < 1.
YO

A power series is one of the form Zanz". We are
mostly interested in those power series that converge for
all z € C.

Theorem 10: The power series Zanz" converges for all z

dn+
if lim 2 = 0.

dn

.. . - . dn+
Proof: By the Limit Ratio Test this if |z|. lim 2 -
n

= 0 <1, which holds for all z. %@
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§7.4. Binomial Coefficients

The power series that is used to define the
exponential function involves factorials and the basic
properties make use of the binomial theorem, so let us be
reminded of these things.

If nis a natural number, n! (called factorial n) is
defined inductively by:

or=1;
(n+D!'=(M+1)n!

If n, r € Z and 0 < r < n the binomial coefficient (rr]) IS

. n n!
defined by (r) = m :

n+1 n n
Theorem 11: If0<r£nthen( r j_(r—lj +@.

Proof: A very clever proof of this is to say that if we are

choosing r things from {0, 1, ..., n} then we either choose

0 or we don’t. If we choose 0 then we have to choose the

remaining r — 1 elements from {1, 2, ..., n} and there are
n

(r B 1) such choices. If we don’t choose O then all r

choices must be from {1, 2, ..., n} and in this case there

n :
are @ choices. %@
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Unfortunately this proof won’t do, since it relies on
our intuition. If we are to only prove things from the
axioms we can’t use this interpretation of the binomial
coefficient.

However a purely algebraic verification,
expressing the binomial coefficients in terms of factorials,
is not difficult. We leave this as an exercise.

Theorem 12 (BINOMIAL THEOREM):
n

If n € Nthen (x +y)" = Z@ Xryn-r,

r=0
Proof: Use induction on n.
The coefficient of X'y™"in (x + y)(x + y)" is

24+ (=077 e

§7.5. The Exponential Function

. 2" 2 78
For z € C define exp(z):zm: 1+Z+Z LTI
n=0
By the Ratio Limit Test this series converges for all z.

The real number e is defined by e = exp(1) and clearly
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e > 1. (In fact e is approximately 2.718 but we won’t
assume this.)

At this stage we haven’t identified exp(z) as e* but it does
seem to have the right properties.

Theorem 13: exp(x + y) = exp(x).exp(y)

I’ S

Proof: LHS = ZZ gl (r—s)l

r=0 s=0
st

:,§§ sl tl

Corollary: exp(n) = e" for all natural numbers n.

—Twheret=r-s. %@©

For the moment let’s restrict our attention to exp(x)
for real x. Clearly exp(0) = 1 and we’ve defined exp(1) =
e.

Theorem 14:

(1) exp(x) > 0O for all real x;

(2) exp(x) is an increasing function of x;

Proof:

(1) For real x > 0 it’s obvious that exp(x) > 0, but if x <0
the series has alternating positive and negative terms.
However by Theorem 13, exp(x).exp(—x) = exp(0) = 1. It
follows that exp(x) > 0 for negative x and hence for all
real x.
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(2) If y > 0 then exp(y) > 1 and so, by Theorem 13

exp(x +y) > exp(x).
Hence exp(x) is an increasing function of x. %@

§7.6. The Logarithm Function
We must now define log x for all positive real x.
We do this in three stages:
(1) If x > 1, log x is defined to be {y € Q*| &Y < x};
(2) If 0 <x <1, log x is defined to be — log(1/x);
(3) log 1 is defined to be 0.

Note that {y € Q'] ¢¥ < x} is a non-empty initial
segment of Q* that has an upper bound and hence, by our
definition, it is a positive real number.

It can then be demonstrated that log x is the inverse
function to the exponential function and hence has all the
usual properties. It can be represented by a power series,
or at least log(1 + x) can, but this only converges for — 1
< x < 1. We won’t go into that here. At this moment all
we need to use the log function for is to enable us to define
xY where X, y are positive reals.

We define x¥ = %1% X |f m, n are both natural
numbers m" = ™09 M = (gl09 MM by Theorem 14. This is

m" by our previous definition so our new definition agrees
with the more restricted one.
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§7.7. The Trigonometric Functions

The usual definition of the trigonometric functions
Is essentially geometric. But as they rely on diagrams and
geometric intuition these definitions are not suitable for a
rigorous development. Instead we make use of the
exponential function.

We have defined e* for all complex numbers, z, by
the power series:

2 3
ef=1+z+ % + % +.
In particular, if z is purely imaginary, we can write
1 b is K_IL+QIL
x2 ix3

[y (XX
=\1-o1tq— ) FHX=31tg )

We define cos x = Re(e”) and sin x = Im(e™), the real and
imaginary parts of e’ so that:
e™ = cos x + i sin x.
This gives the power series expansions for both
sin x and cos x:

2 4
X* X
K

sinx = X—§+§
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Also it’s obvious from these power series that sin 0 =0
and cos 0 = 1 and sin(—x) = — sin x and cos(—x) = cos X.
Moreover the sum and difference formulae are direct
consequences of the fact that e*.e" = e/ *¥),

Theorem 15:

sin(x +y) =sin X.cos y + COS X.sin'y

sin(X —y) =sin x.cos y — €os X.sin 'y

COS(X +y) = €0S X.coS y — sin x.siny

cos(X —y) = cos X.cos y + sin x.siny
Proof: These come from the fact that:
cos(xxy)xisin(xty)

= (cos x £ isinx)(cosyzisiny)%©

Putting x =+ y we get:
sin? X + cos® x = 1;
sin 2x = 2sin x.cos x and
COS 2X = COS*X — Sin®x

§7.8. Definition of «©t

Now we must define « without reference to circles
and arc lengths. We define = by defining n/2 to be the

smallest positive x for which cos x = 0. Now it’s not at all
X2 4
obvious that cos x = =1 — TR T will ever become

zero. However we’ll prove that it does so. Our proof
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requires the Intermediate Value Theorem and the fact that
sin x is continuous. These can be proved by the usual
methods and these proofs can be substantiated ultimately
by the structure we’ve built upon the ZF axioms. So we
won’t repeat them here,

Theorem 16: cos x = 0 for some positive x < 2.
Proof: cos0=1. But1—cos 2

(-2 G5 (@ @

+ ...

24n+2 24n+4
The n’th pair (for n > 0) is ((4n +2) " (@n + 4)|j

4an+2

=Gn+a) [(4n + 4)(@n +3)-22] >0.
At first sight, this merely gives cos 2 < 1, which is no
surprise. But the first pair evaluates to 1% SO

1-cos2>1
which gives cos 2 < 0. By the Intermediate Value
Theorem, and the fact that cos x is continuous , cos x =0
for some x > 0.
We define /2 to be the smallest positive x for
which cos x = 0.
This defines & and also establishes that & < 4. @
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Theorem 17: sin(n/2) = 1.

Proof: From sin®+ cos?>x = 1 we easily deduce that
sin(n/2) =+ 1.

By taking terms in pairs we can write

] X3 X5 X X4n+l X4n+3
S'”Xz(x‘ﬁj *[5‘7_9 +---*((4n+1)!‘(4n+3)J

+ ...

The n’th pair (for n > 0) is:

(4n—:3)! [(4n +3)(4n +2) —x7] .

If 0 < x <2 then x? < 6 and so each pair is positive. Since
n/2<2,sinx>0. %©

We can now go on to establish all the usual
properties that in involve mt, such as cos(n/2 — x) = sin x,
cos © = — 1 and the fact that sin x and cos x are periodic
functions with period 27.

We are now able to express complex numbers in
polar form. The modulus of z=x + iy is defined to be ||
=+/x?+y?. We can write x = r cos 6 and y = r sin 0 for
some 6 with 0 < 0 < 2m. If r = 0 this representation is
unique. Essentially this 6 is defined to be the argument
of z. And, since cos 6 and sin 6 have been defined to be

the real and imaginary parts of e'® we can write z = re'®,
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the polar form of z. In particular we get the famous
identity e'™ = —1.

However it’s more convenient to consider the
argument of a non-zero complex number not as a real
number but as a real number modulo 2.

We set up the equivalence relation ~ on R by
defining x ~ y if x, y differ by an integer multiple of 2.
We let R, to be the set of equivalence classes and define
[X] + [y] = [x + y], where [x] denotes the equivalence class
containing Xx. It’s easy to check that this operation is well-
defined and associative. (In terms of group theory this is
simply the quotient group R/{27) where (27) is the cyclic
subgroup generated by 2rt.) The argument of the non-zero
complex number z = r'® is defined to be [6] in Rox. As a
consequence we can write

arg(zi1z,) = arg(zy) + arg(z,)
without having to worry about what happens if we end up
with a value larger than 2r.

And arg(-z) = arg(z) + arg(-1) = arg(z) + m.

For the derivatives and integrals of the trig
functions we merely differentiate the power series term
by term. This requires a little justification but the relevant
proofs are no different, based on our ZF development,
than they are normally.
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