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7. TRANSCENDENTAL 

FUNCTIONS 
 

§7.1. Exponentiation 
 We defined addition and multiplication for natural 

numbers and extended these to the set of complex 

numbers, ℂ. However we’ve defined xm only for natural 

numbers. Part of the reason is that there are problems 

when m is non-real, or even a negative real. 

 But it is possible to provide a definition of xz when 

x is a positive real, and z is any complex number. This 

simplest way to do this is to define ez, for the constant e, 

as a sum to infinity of a certain power series, and then to 

define xz as ez.log x. 

 Of course this requires defining the exponential and 

the log functions. We define the exponential function as a 

power series. What exactly is an infinite series? It is the 

sum to infinity of some sequence. So we recall the 

definition of an infinite sequence. 

 

§7.2. Sequences 
An infinite sequence of elements on a set S is a 

function u:ℕ→S. We call u(n) the n’th term and denote 

it by un. The sequence can be written as u0, u1, … or 

simply (un) where un is the n’th term. 
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We now focus on infinite sequences of complex 

numbers where we can develop the concept of 

convergence. 

 

A sequence (an) of complex numbers is bounded if there 

exists a real number K such that |an|  K for all n. 

A sequence (an) is null if for all  > 0 |an| <  for all 

sufficiently large n. Clearly null sequences are bounded. 

What does ‘sufficiently’ large mean? A more formal 

version of this definition is that a sequence (an) is bounded 

if [ > 0 →Nn[n  N → |an| < ]]. 

 

Example 1: The sequence 1, 1/2, 1/3, 1/4, ... is null. 

The sequence 1, −1, 1, −1, ... is bounded but not null. 

The sequence 1, 2, 3, 4, ... is unbounded. 

 

Theorem 1: The sum and difference of null sequences are 

null. 

Proof: Let  > 0. For some N, |an|, |bn| < /2 for all n  N 

and so |an  bn|  |an| + |bn| < . ☺ 

 

Theorem 2: If (an) is null and (bn) is bounded then (anbn) 

is null. 

Proof: Suppose K > 0 such that |bn|  K for all n and 

suppose that (an) is null.  Let  > 0. 
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Then for some N, |an| < 


K
 for all n  N.  Hence |anbn| < . 

☺ 

 

 We say that (an) converges to a limit L if the 

sequence (an − L) is null and we write an → L or lim an 

= L. If it doesn’t converge, we say that it diverges. Limits, 

if they exist, are unique. The limit of a sum, difference or 

product of two convergent sequences is the sum, 

difference or product of the respective limits and if (an) 

converges to a non-zero limit L then (1/an) converges to 

1/L. You should have seen all of this before. 

 

We say that a sequence (an) is 

increasing if an  an+1 for all n, and 

strictly increasing if an < an+1 for all n. 

 

Similarly we define decreasing and strictly decreasing. 

 

A sequence (an) is monotone if it is either increasing or 

decreasing. 

 

Theorem 3: A bounded increasing sequence of positive 

reals converges. 

Proof: Suppose (an) is a bounded increasing sequence. 
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Since {an | n  ℕ} is a non-empty initial segment of ℚ+ 

and is bounded above, it’s a positive real number, say L. 

Let  > 0. Since we’re working with positive reals we need 

to have L −  > 0, so let 1 = MIN(, L).   

If an  L − 1 for all n then: 

{an | n  ℕ}  L − 1, a contradiction. 

Hence aN > L − 1 for some N. 

For all n  N, we have L  an  aN > L − 1 and so 

|an − L| < 1 < . ☺ 

Corollary: A bounded increasing sequence of real 

numbers converges.  

Case 1: aN > 0 for some N. The sequence aN, aN+1, ... is an 

increasing sequence of positive real numbers, bounded 

above, and so converges to some limit L. Clearly this will 

be lim an. 

Case 2: an < 0 for all N. Define bn = 1 + (an − a0). 

Then bn > 0 for all n and is bounded above. 

Hence (bn) converges and hence so does (an). 

Corollary: A bounded decreasing sequence converges. 

Proof: If (an) is decreasing then (− an) is increasing. 

 

Theorem 4 (Squeeze Law): 

If an  bn  cn and an → L and cn → L then bn → L. 

Proof: |bn − L|  MAX(|an − L|, |cn − L|). ☺ 
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Theorem 5: If 0 < a < 1 then (an) converges to 0. 

If a > 1, (an) diverges. 

Proof: If 0 < a < 1 then (an) is decreasing and bounded 

below. If a > 1, (an) is unbounded. ☺ 

 

§7.3. Infinite Series 
 An infinite series is really just an infinite sequence, 

for which we consider the corresponding sequence of 

partial sums. When we consider it as a series, we write 

(an) as an. The sequence of partial sums is (sn) where 

sn = a0 + a2 + ... + an. 

 The series an is said to converge if the sequence 

(sn) converges and the limit is written using the same 

notation, that is, an. Sometimes we start at n = 1, in 

which case we write 
n=1



an . If the series doesn’t converge 

it is said to diverge. 

 

Theorem 6: If an converges then lim an = 0. 

Proof: For all n, sn = sn−1 + an and lim sn = lim sn−1. ☺ 

 

As usual a geometric series is one of the form an. 

If |a| < 1 then an converges to 
1

1  − a
 . 
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Theorem 7 (Comparison Test): If 0 < an  bn and bn 

converges then an converges and an  bn. 

Proof: Use the squeeze law on the partial sums. ☺ 

 

Theorem 8 (Ratio Test): 

If 
an+1

an
  < r < 1 for all sufficiently large n then 

an converges. 

Proof: Use the Comparison Test with a0.r
n. 

 

Theorem 9 (Ratio Limit Test): 

If lim an+1/an = L < 1 then an converges. 

Proof: For sufficiently large n, an+1/an < ½(1 + L) < 1. 

☺ 

 

 A power series is one of the form anzn. We are 

mostly interested in those power series that converge for 

all z  ℂ. 

 

Theorem 10: The power series anzn converges for all z 

if lim 
an+1

an
 = 0. 

Proof: By the Limit Ratio Test this if |z|. lim 
an+1

an
  

= 0 < 1, which holds for all z. ☺ 
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§7.4. Binomial Coefficients 
 The power series that is used to define the 

exponential function involves factorials and the basic 

properties make use of the binomial theorem, so let us be 

reminded of these things. 

 If  n is a natural number, n! (called factorial n) is 

defined inductively by: 

                                       0! = 1; 

                              (n + 1)! = (n + 1) n! 

 

If n, r  ℤ and 0  r  n the binomial coefficient n
r



 


  is 

defined by 






n

r
  = 

n!

r! (n − r)!
 . 

 

Theorem 11: If 0 < r  n then 






n + 1

r
 = 







n

r − 1
  + 







n

r
 . 

Proof: A very clever proof of this is to say that if we are 

choosing r things from {0, 1, …, n} then we either choose 

0 or we don’t.  If we choose 0 then we have to choose the 

remaining r − 1 elements from {1, 2, …, n} and there are 







n

r − 1
  such choices.  If we don’t choose 0 then all r 

choices must be from {1, 2, …, n} and in this case there 

are 






n

r
 choices. ☺ 
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 Unfortunately this proof won’t do, since it relies on 

our intuition. If we are to only prove things from the 

axioms we can’t use this interpretation of the binomial 

coefficient. 

 However a purely algebraic verification, 

expressing the binomial coefficients in terms of factorials, 

is not difficult. We leave this as an exercise. 

 

Theorem 12 (BINOMIAL THEOREM): 

If n  ℕ then (x + y)n = 
r=0

n







n

r
 xryn−r .  

Proof: Use induction on n. 

The coefficient of xryn+1−r in (x + y)(x + y)n is 







n

r − 1
  + 







n

r
  = 







n + 1

r
 . ☺ 

 

§7.5. The Exponential Function 

For z  ℂ define exp(z) = 
n=0



 
zn

n!
 = 1 + z + 

z2

2!
  + 

z3

3!
  + .... 

By the Ratio Limit Test this series converges for all z. 

 

The real number e is defined by e = exp(1) and clearly 
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e > 1. (In fact e is approximately 2.718 but we won’t 

assume this.) 

 

At this stage we haven’t identified exp(z) as ez but it does 

seem to have the right properties. 

 

Theorem 13: exp(x + y) = exp(x).exp(y) 

Proof: LHS = 


= =

−

−0 0 )!(!r

r

s

srs

sr

y

s

x
 

                     =
x

s

y

t

s t

tr ! !=



=




00

where t = r − s. ☺ 

Corollary: exp(n) = en for all natural numbers n. 

 

 For the moment let’s restrict our attention to exp(x) 

for real x. Clearly exp(0) = 1 and we’ve defined exp(1) = 

e. 

 

Theorem 14: 

(1) exp(x) > 0 for all real x; 

(2) exp(x) is an increasing function of x; 

Proof: 

(1) For real x > 0 it’s obvious that exp(x) > 0, but if x < 0 

the series has alternating positive and negative terms.  

However by Theorem 13, exp(x).exp(−x) = exp(0) = 1.  It 

follows that exp(x) > 0 for negative x and hence for all 

real x. 
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(2) If y > 0 then exp(y) > 1 and so, by Theorem 13 

exp(x + y) > exp(x). 

Hence exp(x) is an increasing function of x. ☺ 

 

§7.6. The Logarithm Function 
 We must now define log x for all positive real x. 

We do this in three stages: 

(1) If x > 1, log x is defined to be {y  ℚ+| ey < x}; 

(2) If 0 < x < 1, log x is defined to be − log(1/x); 

(3) log 1 is defined to be 0. 

 

 Note that {y  ℚ+| ey < x} is a non-empty initial 

segment of ℚ+ that has an upper bound and hence, by our 

definition, it is a positive real number. 

 It can then be demonstrated that log x is the inverse 

function to the exponential function and hence has all the 

usual properties. It can be represented by a power series, 

or at least log(1 + x) can, but this only converges for − 1 

< x  1. We won’t go into that here. At this moment all 

we need to use the log function for is to enable us to define 

xy where x, y are positive reals. 

 We define xy = ey.log x.  If m, n are both natural 

numbers mn = en.log m = (elog m)n by Theorem 14. This is 

mn by our previous definition so our new definition agrees 

with the more restricted one. 
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§7.7. The Trigonometric Functions 
 The usual definition of the trigonometric functions 

is essentially geometric. But as they rely on diagrams and 

geometric intuition these definitions are not suitable for a 

rigorous development. Instead we make use of the 

exponential function. 

 We have defined ez for all complex numbers, z, by 

the power series: 

ez = 1 + z + 
z2

2!
 + 

z3

3!
  + ... 

In particular, if z is purely imaginary, we can write 

eix = 1 + ix + 
(ix)2

2!
 + 

(ix)3

3!
  + ... 

     = 1 + ix − 
x2

2!
 + 

ix3

3!
  − ... 

      = 








1 − 
x2

2!
 + 

x4

4!
 − ...   + i 









x − 
x3

3!
 + 

x5

5!
 − ...  . 

 

We define cos x = Re(eix) and sin x = Im(eix), the real and 

imaginary parts of eix so that: 

eix = cos x + i sin x. 

This gives the power series expansions for both 

sin x and cos x: 

                          cos x = 1 − 
x2

2!
 + 

x4

4!
 − ...  and 

                           sin x = x − 
x3

3!
 + 

x5

5!
 − ...  
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Also it’s obvious from these power series that sin 0 = 0 

and cos 0 = 1 and sin(−x) = − sin x and cos(−x) = cos x. 

Moreover the sum and difference formulae are direct 

consequences of the fact that eix.eiy = ei(x + y). 

 

Theorem 15: 

sin(x + y) = sin x.cos y + cos x.sin y 

sin(x − y) = sin x.cos y − cos x.sin y 

cos(x + y) = cos x.cos y − sin x.sin y 

cos(x − y) = cos x.cos y + sin x.sin y 

Proof: These come from the fact that: 

cos(x  y)  i sin (x  y) 

                                = (cos x  i sin x)(cos y  i sin y)☺ 

 

Putting x =  y we get: 

sin2 x + cos2 x = 1; 

sin 2x = 2sin x.cos x and 

cos 2x = cos2x − sin2x 

 

§7.8. Definition of  
 Now we must define  without reference to circles 

and arc lengths. We define  by defining /2 to be the 

smallest positive x for which cos x = 0. Now it’s not at all 

obvious that cos x = = 1 − 
x2

2!
 + 

x4

4!
 − ...  will ever become 

zero. However we’ll prove that it does so. Our proof 
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requires the Intermediate Value Theorem and the fact that 

sin x is continuous. These can be proved by the usual 

methods and these proofs can be substantiated ultimately 

by the structure we’ve built upon the ZF axioms. So we 

won’t repeat them here. 

 

Theorem 16: cos x = 0 for some positive x < 2. 

Proof: cos 0 = 1. But 1 − cos 2 

 = 






22

2!
 − 

24

4!
  + 







26

6!
 − 

28

8!
  + ... +  







24n+2

(4n + 2)!
 − 

24n+4

(4n + 4)!
   

                                                                                   + ... 

The n’th pair (for n  0) is 






24n+2

(4n + 2)!
 − 

24n+4

(4n + 4)!
  

= 
24n+2

(4n + 4)!
 [ ](4n + 4)(4n + 3) − 22   > 0. 

 At first sight, this merely gives cos 2 < 1, which is no 

surprise. But the first pair evaluates to 1
5

8
  so 

1 − cos 2 > 1 

which gives cos 2 < 0. By the Intermediate Value 

Theorem, and the fact that cos x is continuous , cos x = 0 

for some x > 0. 

 We define /2 to be the smallest positive x for 

which cos x = 0. 

This defines  and also establishes that  < 4. ☺ 
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Theorem 17: sin(/2) = 1. 

Proof: From sin2x+ cos2x = 1 we easily deduce that 

sin(/2) =  1. 

By taking terms in pairs we can write  

 

sin x = 








x − 
x3

3!
  + 







x5

5!
 − 

x7

7!
  + ... + 







x4n+1

(4n + 1)!
 − 

x4n+3

(4n + 3)!
  

                                                                                   + ... 

The n’th pair (for n  0) is: 
x4n+1

(4n + 3)!
 [ ](4n + 3)(4n + 2) − x2  . 

If 0 < x < 2 then x2 < 6 and so each pair is positive.  Since 

/2 < 2, sin x > 0. ☺ 

 

 We can now go on to establish all the usual 

properties that in involve , such as cos(/2 − x) = sin x, 

cos  = − 1 and the fact that sin x and cos x are periodic 

functions with period 2. 

 

 We are now able to express complex numbers in 

polar form.   The modulus of z = x + iy is defined to be |z| 

= x2 + y2 .  We can write x = r cos  and y = r sin  for 

some  with 0   < 2.  If r  0 this representation is 

unique.  Essentially this  is defined to be the argument 

of z.  And, since cos  and sin  have been defined to be 

the real and imaginary parts of ei we can write z = rei, 
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the polar form of z.  In particular we get the famous 

identity ei = −1. 

 However it’s more convenient to consider the 

argument of a non-zero complex number not as a real 

number but as a real number modulo 2. 

We set up the equivalence relation ~ on ℝ by 

defining x ~ y if x, y differ by an integer multiple of 2.  

We let ℝ2 to be the set of equivalence classes and define 

[x] + [y] = [x + y], where [x] denotes the equivalence class 

containing x.  It’s easy to check that this operation is well-

defined and associative.  (In terms of group theory this is 

simply the quotient group ℝ/2 where 2 is the cyclic 

subgroup generated by 2.)  The argument of the non-zero 

complex number z = ri is defined to be [] in ℝ2. As a 

consequence we can write 

arg(z1z2) = arg(z1) + arg(z2) 

without having to worry about what happens if we end up 

with a value larger than 2. 

 

And arg(−z) = arg(z) + arg(−1) = arg(z) + . 

 

 For the derivatives and integrals of the trig 

functions we merely differentiate the power series term 

by term.  This requires a little justification but the relevant 

proofs are no different, based on our ZF development, 

than they are normally. 
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